Search and Imperative Programming

Krzysztof R. Apt
aptQcwi.nl

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

and

Dept. of Mathematics, Computer Science, Physics & Astronomy
University of Amsterdam, Plantage Muidergracht 24
1018 TV Amsterdam, The Netherlands

Andrea Schaerf

aschaerf@dis.uniromal.it

Dipartimento di Informatica e Sistemistica, Universita di Roma “La Sapienza”
via Salaria 113, 00198 Roma, Italy

Abstract

We augment the expressive power of imperative pro-
gramming in order to make it a more attractive vehicle
for problems that involve search. The proposed addi-
tions are limited yet powerful and are inspired by the
logic programming paradigm. We illustrate their use
by presenting solutions to a number of classical prob-
lems, including the straight search problem, the knap-
sack problem, and the 8 queens problem. These solu-
tions are substantially simpler than their counterparts
written in the conventional way and can be used for
different purposes without any modification.

The proposed language is an intermediate stage on
the road towards a realization of a strongly typed con-
straint programming language that combines the ad-
vantages of the logic programming and imperative pro-
gramming.

1 Introduction

1.1 Motivation

In this paper we try to combine advantages of logic
and imperative programming in order to deal in a natu-
ral way with algorithmic problems that involve search.

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is

given that copyright is by permission of the ACM, Inc. To copy otherwise,

to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.

POPL 97, Paris, France

© 1997 ACM 0-89791-853-3/96/01 ..$3.50

67

To this end we extend imperative programming with
some features that are inspired by the logic program-
ming paradigm. They involve:

e use of boolean expressions as statements and vice
versa,

¢ a statement dual to the FOR statement that intro-
duces (don’t know) nondeterminism in the form of
choice points and backtracking,

o a FORALL statement that introduces a controlled
form of iteration over the backtracking,

e unification — here limited to a use of equality as
assignment; this yields a new parameter-passing
mechanism.

In such an amalgamated language we can freely profit
from the advantages of both programming styles. In
particular, we can use a rich variety of data types, in-
cluding arrays and records, in presence of strong type
checking.

The assignment, shunned in declarative program-
ming and a fortiori logic programming, is in our opinion
needed in a number of natural situations, which we illus-
trate by means of several examples. In general, assign-
ment seems to be needed for counting or for recording
purposes and the solutions to such uses offered within
the logic programming paradigm are unnatural. In par-
ticular, in Prolog, assignment is either used in a space
inefficient and limited form, like in X1 is X+1, or simu-
lated using assert and retract. In our view the direct

use of assignment, as in imperative programming, is in
such cases simpler and more efficient. .

In turn, the logic programming paradigm prov1§les
a number of useful features. The built-in backtracklr}g
mechanism supports nondeterministic programming in
a simple way. The use of unification to assign values ~al—
lows us to use the same program for testing, computing
one, some or all solutions, or for completing a partial
solution. This versatile use of programs is also avail-
able in our language proposal. It should be pointed
out, however, that our use of unification is extremely
restricted and consequently another important aspect
of logic programming — symbolic programming — is
not realized in our language proposal.

Combining two programming styles is always a de-
batable endeavour and it is important to reflect what,
if any, are the advantages of such an amalgamation.
We try to answer this question by presenting solutions
to several classical problems. We consider these pro-
grams superior to their counterparts written as impera-
tive programs or as programs in the logic programming
style for the following reasons:

o In each case the programs are closer to the speci-
fications than the alternative solutions. This sug-
gests that the proposed additions make the pro-
gramming task simpler and improve readability.

®

The presented programs, or program fragments,
without assignment can be viewed as declarative
in the sense that they admit an alternative reading
as logic formulae. Verification of such programs or
program fragments is considerably simplified due
to their logical meaning. In some cases programs
are equal to their specifications — see e.g. our so-
lutions to Problems 3 and 10, — and are therefore
obviously correct.

e All the introduced programming constructs guar-
antee termination. As a result we can now write
programs, like the solutions to the just mentioned
two problems or solutions to Problems 8 and 11,
termination of which is guaranteed by their syn-
tactic form.

» When passing from specifications to a solution the
introduction of additional variables should be view-
ed as a drawback, because their relation to the
variables present in the specifications has to be
properly explained. From this viewpoint constructs
or solutions (of the same complexity) that do not
call for the use of additional variables should be
considered as superior. Now, the proposed solu-

tions do introduce less variables than the tradi-
tional ones.

68

In our opinion, the proposed additions blend v;fell

with the conventional way we look at the imperative

rograms.

P i we often refer here to programs presented in Wirth
(1986), a book about programming in Modula-2, we
have used below the syntax of Modula-2. More pre-
cisely, as a base language we take a subset of Modula-2
in which, after carrying out the proposed extensions,
the example programs can be written.

The alternative choice, C, in contrast to Modula-2,
would have required a change of the semantics of the
base language. Indeed, in C boolean expressions fol-
lowed by ¢;” are already legal statements, the presence
of which is ignored.

It should be stressed, however, that the notation is
completely inessential in our investigations. The pre-
sented programs should be understandable by anybody
familiar with the basics of an imperative language. More-
over, the proposed additions can be naturally incorpo-
rated into most of the programming languages support-
ing the imperative programming paradigm.

1.2 Related Work

A departure point for our considerations is the work
of Cohen (1979), who surveys some simple primitives
for nondeterministic programming within the impera-
tive programming framework.

These primitives involve a nondeterministic choice,
here adopted as an OR statement, a parameterized non-
deterministic choice, here adopted as a SOME statement,
and the failure and success statements with the ex-
pected meaning. The failure and success statements
are present in many imperative languages that support
backtracking, the most known of them being Icon (see
Griswold & Griswold (1983)) and SETL (see Schwartz,
Dewar, Dubinsky & Schonberg (1986)).

In our language proposal we follow the approach
taken in the 2LP language of McAloon & Tretkoff (1995)
and identify boolean expressions and statements. As
a result failure and success statements come for free
— they are simply booleans expressions used as state-
ments and that evaluate to FALSE, respectively TRUE.
This makes the resulting programs conceptually sim-
pler. Of all existing languages, 2LP is the closest to the
spirit of our proposal. This language uses C syntax and
has been designed for constraint programming in the
area of optimization. 2LP stands for “logic program-
ming and linear programming”.

* The features that are present in our proposal and
which we believe are new are: The FORALL statement,
that offers a controlled iteration over backtracking, equal-
ity used as an assignment, and a new parameter mech-
anism that combines call by value and call by reference.

On the logic programming side we would like to men-
tion here the work that dealt with addition of arrays
and bounded quantifiers (that correspond to the FOR
and SOME loops) to the logic programming paradigm.
Arrays in logic programming were introduced by Eriks-
son & Rayner (1984).

Bounded quantifiers and arrays were introduced in
logic programming by Kluzniak (1993) in a specifica-
tion language SPILL-2 in which executable specifica-
tions can be written in the logic programming style. For
related references see Voronkov (1992) and Barklund &
Bevemyr (1993).

Conceptually, we arrived at our language proposal
by encountering difficulties in finding satisfactory solu-
tions to various problems here considered, like the knap-
sack problem, in the logic programming framework of
Apt (1996).

In our exposition we proceed in stages and introduce
each extension separately.

2 Expressions and Statements

2.1 Boolean Expressions as Statements

We begin by allowing boolean expressions to be used as
statements. In what follows we refer to boolean expres-
sions used as statements as tests. A specific interpre-
tation of tests is crucial for our purposes. We stipulate
the following.

Definition 1
(i) If a test evaluates to TRUE, the computation upon
reaching the test continues.

(ii) If a test evaluates to FALSE, the computation upon
reaching the test fails.

(ili) If during evaluation of a test an uninstantiated

variable is encountered, then a run-time error arises.

(iv) If the computation of a procedure call fails, then
the computation upon reaching this procedure call
fails.

(v) If the computation of a function call fails, then a
run-time error arises.

(vi) A finite, error-free computation succeeds if it does
not fail.]

Clause (iii) refers to the notion of an uninitialized
variable, further elaborated in Section 5.1. We shall
also relax there this clause for tests of the form s = t.

Clauses (iv) and (v) explain how the failure propa-
gates due to the use of functions and procedures. We
stress the fact that failure differs from a run-time error.

For example, consider the following program frag-
ment

69

x < 10;
y o= 2%x + 1

If the value of x is 6 the program succeeds and y is 13;
conversely, if the value of x is 15 the program fails and
no value is given to y.

The above extension is hardly of interest in isolation.

2.2 Statements as Boolean Expressions

In the above definition we postulated that finite, error-
free computations either succeed or fail. So it is natural
to introduce the following definition.

Definition 2

e If a computation of a sequence of statements suc-
ceeds, then we say that this statement sequence
evaluates to TRUE.

o If a computation of a sequence of statements fails,
then we say that this statement sequence evaluates
to FALSE. O

This definition allows us to use statement sequences as
boolean expressions.

As a first example of the usefulness of this extension
consider the following problem.

Problem 1 Check whether an array a: ARRAY[1..M]
OF INTEGER is ordered.

The solution is immediate — it suffices to write the
following statement:

FOR i := 1 TO M-1 DO a[i] <= ali+1] END

Note that when the array is not ordered, the above
statement evaluates to FALSE as soon as the least value
of i is encountered for which the test a[i] <= a[i+1]
fails.

We postulate that the control variable of a FOR state-
ment retains its value once the FOR statement is exited,
be it due to a failure or due to a successful termination.
Consequently, we can now use the above statement as
a boolean expression, as in the following program frag-
ment:

WHILE NOT FOR i:=1 TO M-1 DO a[i] <= a[i+1] END
DO swap(alil, a[i+1]) END

which implements a naive sorting algorithm.

Problem 2 Count the number of different elements in
an array x: ARRAY[1..M] OF CHAR.

A natural solution to this problem (although not the
most efficient one) uses a statement as a boolean expres-
sion and assignment:

no := 0;

FOR i := 1 TO M DO
IF FOR j := 1 TO i-1 DO x[i] <> x[j] END
THEN no := no+l
END

END

The outcome is computed in the variable no.

3 Nondeterministic Statements

We now proceed by introducing choice points and back-
tracking into the computational process.

3.1 OR Statement

We begin by introducing an OR statement with the fol-
lowing syntax:

EITHER <statement-sequence>
ORELSE <statement-sequence>

ORELSE <statement-sequence>
END

We refer to the parts of the OR statement as branches.
The computational interpretation is as follows.

Definition 3 The computation of an OR statement starts
by proceeding through the first branch. If the computa-
tion eventually fails, possibly beyond the end of the OR
statement, backtracking takes place and the computa-
tion resumes with the next branch in the state in which
the previous branch was entered. If the last branch fails
the OR statement fails. O

Thus the OR statement introduces choice points to
which the computation can return.
Consider the following program fragment

EITHER x := x - 20; x> 0
ORELSE x > 10; y := x
END

If the value of x is 15 the computation that passes
through the first branch fails upon encounter of the test
x > 0, then backtracking takes place, the value 15 for
x is restored and the computation eventually succeeds,
assigning the value 15 to y. Conversely, if the value of
x is 5, the second branch fails as well and no value is
assigned to y.

Consider now this other example, assuming the value
of x is -1:

EITHER y := x

ORELSE x < 0; y := -x
END

x = x + 10;

y > 5;

70

Here again the computation that passes through the
first branch fails upon encounter of the test y > 5 and
backtracking takes place. The second branch of the OR
statement is entered restoring the value of x equal to
-1 and eventually the whole computation fails, with x
equal to 9 and y equal to 1.

Note that in the second example the failure occurs
outside the scope of the OR statement;' that is, the back-
tracking takes place here after the control has left the OR
statement. The example shows that upon backtracking
the assignments outside the scope of the OR statement
are also “undone”. This interpretation of the meaning
of the OR statement is crucial to our purposes.

3.2 SOME Statement

Next, we introduce a SOME statement with the following
syntax:

SOME <ident> := <expression> TO <expression>
DO <statement-sequence>
END

The intention is that the SOME statement is a “dual” of
the FOR statement. Let S be the statement

SOME i := el TO e2 DO T END

where i is an integer variable and in the current state
el evaluates to an integer m1 and e2 evaluates to an
integer m2.

The following cases arise.

e m2 < ml. Then S is equivalent to the empty state-
ment (skip).

e m2 = ml1. Then S is equivalent to T.

e m2 > ml. Then S is equivalent to

EITHER i := mi
ORELSE i := mi+1
ORELSE i := m2
END;

T

As in the case of the FOR statement we postulate
that the control variable of a SOME statement retains
its value once the SOME statement is exited, be it due
to a success or due to a failure. Also, we assume for
simplicity that the variable i is not modified in T.2

As a simple example consider the following problem
that illustrates use of the SOME-FOR combination.

!This point will be reconsidered in Section 4.

2This is not required but, like in the case of the FOR statement, is a.

common-sense restriction. In fact, a variable processed automatically
should not be modified explicitly by the programmer.

Problem 3 Straight string search. Consider two ar-

rays of characters, p (the pattern) and s (the string),
declared as

p: ARRAY [0..M-1] OF CHAR;
s: ARRAY [0..N-1] OF CHAR;

with M < N. Find the first occurrence of p in s.

The following program is a naive solution to this
problem. It is much more straightforward than the cus-
tomary solution given in Wirth (1986, page 60).

SOME i:= 0 TO N-M DO
FOR j:= 0 TO M-1 DO
s{i+j] = p(j]
END
END

The result is delivered here in the variable i.

In turn, the following problem illustrates use of the
FOR-SOME combination.

Problem 4 (See Coelho & Cotta (1988, page 193))
Call a sequence of 27 elements remarkable if it consists
of three 1’s, three 2’s, ..., three 9’s arranged in such a
way that for all ¢ € fl..g] there are exactly ¢« numbers
between successive occurrences of i. For example, the
sequence

(1,9,1,2,1,8,2,4,6,2,7,9,4,5,8,6,3,4,7,5,3,9,6,8,3,5,7)

is remarkable. Write a program that tests whether an
array of 27 elements is a remarkable sequence.

The desired program is almost a verbatim specifica-
tion of the problem.

TYPE Sequence = ARRAY[1..27] OF [1..9];
PROCEDURE question(VAR a: Sequence);
VAR i,j: CARDINAL;
BEGIN
FOR i := 1 TO 9 DO
SOME j := 1 TO 25-2%i DO
aljl = i;
alj+i+1] =
alj+2%i+2]
END
END
END question

i;

i

The bound 25-2%i comes from the requirement that
j+2#i+2 < 27. In Section 5 we shall analyze the re-
lated problem of finding remarkable sequences.
Finally, we discuss a linear planning problem, known
in the Artificial Intelligence literature as the proposi-
tional STRIPS problem (see Fikes & Nilsson (1971)).
In propositional STRIPS, actions and goals are mem-
hers of two (disjoint) alphabets of propositional letters.
A STRIPS action rule is composed by an action and
three sets of goals: the preconditions, the add-list, and
the delete-list. A state is a set of goals. An action is

71

applicable in a given state if all its preconditions are
members of the state. The result of the application of
an action in a current state is a new state where the
goals in the add-list and the delete-list of the action
are, respectively, added to and deleted from the current
state. An action library is a set of action rules.

Problem 5 Propositional STRIPS Planner. Given an
action library, an initial state and a final state, find a
sequence of actions whose application leads from the
initial state to a state that includes the final state.

The above problem is PSPACE-complete (see Bylan-
der (1991)) and is generally solved using backtracking
algorithms. In particular, the so-called STRIPS algo-
rithm works (non-deterministically) as follows: guess a
goal g in the final state not already satisfied in the cur-
rent state, guess an action a which has ¢ in its add-list,
and compute (recursively) the subplan p to reach the
preconditions on a. The concatenation of the sequences
po(a) for all g in the final state gives the complete plan.

The STRIPS algorithm involves guessing (realized
by backtracking) and consequently it is natural to im-
plement it in Prolog. A Prolog implementation of the
STRIPS algorithm is provided by Shoham (1994). In
this solution, due to lack of assignment in Prolog, var-
ious auxiliary variables are needed to store temporary
values of goals and plans. On the other hand, imple-
mentation in traditional imperative languages is pretty
cumbersome due to lack of facilities that support back-
tracking.

In contrast, in our language, we can use both guess-
ing (realized by means of the OR and SOME statements)
and assignment; therefore we can produce a conceptu-
ally simpler and more readable solution.

We use lists of characters to represent sets of goals
and actions. To deal with them, we assume the avail-
ability of a type List (whose elements are characters),
with various predefined functions (with their usual in-
tuitive meaning): member, head, tail, subset, union,
difference, insert. We also assume that head and
tail fail if the argument is an empty list.

TYPE

ActionType = RECORD
Name: CHAR;
Prelist: List;
AddList: List;
Dellist: List

END;

ActionLib = ARRAY [1..NumActioms] OF ActionType;

PROCEDURE Strips(VAR State: List; Goals: List;
ForbActions: List;
VAR Plan: List; Lib: ActionLib);
VAR Goal: CHAR;

BEGIN
IF NOT subset(Goals,State)
THEN
ChooseGoal (Goal,Goals,State);
AchieveGoal(Goal,Lib,ForbActions,State,Plan);
Strips(State,Goals,ForbActions,Plan,Lib)
END
END Strips;

PROCEDURE ChooseGoal (VAR Goal: CHAR;
Goals: List; State: List);
BEGIN
EITHER Goal := Head(Goals); NOT member(Goal,State)
ORELSE ChooseGoal(Goal, Tail(Goals))
END
END ChooseGoal;

PROCEDURE AchieveGoal(Goal: CHAR; Lib: Actionlib;
ForbActions: List;
VAR State: List; VAR Plan: List);
VAR i: CARDINAL;
BEGIN
SOME i := 1 TO NumActions DO
NOT member(Lib[i].Name, ForbActions);
member(Goal,Lib[i].AddList);
Strips(State,Lib[i].Prelist,
insert(Lib(i] .Name,ForbActions),Plan,Lib);
ApplyRule(Lib[i],State,Plan)
END
END AchieveGoal;

PROCEDURE ApplyRule(Action: ActionType;

VAR State: List; VAR Plan: List);
BEGIN
State := union(difference(State,Action.Dellist)),
Action.AddList);
Plan := insert(Action.Name,Plan)

END ApplyRule;

The planner is invoked by calling the recursive proce-
dure Strips with the initial state as the State param-
eter, the final state as the Goals parameter, the empty
list for ForbActions and for Plan, and the given action
library (which is not modified) as Lib.

Notice that the guess of the goal, which in Prolog
is typically obtained by the call member (Goal,Goals)
with Goals instantiated and Goal a variable, is imple-
mented here by means of the OR statement.

4 Backtracking and Control Flow

4.1 COMMIT Statement

In the previous section we have seen two constructs that
allow the user to introduce choice points. In large pro-
grams it would be preferable to restrict the range of ac-
tion of the choice constructs to some specific parts of the
program. This would allow us to dispense with keeping

72

track of too many choice points and would prevent un-
expected behaviour that could result from existence of

active choice points far away in the program. .
To this aim, we introduce a COMMIT statement, with
the following syntax:

COMMIT <statement-sequence>
END

The statement COMMIT S END is executed in the same
way as S, except that when the computation of S ends
successfully, all choice points created by the execution
of S are removed. The choice points previously created

are left unchanged.
For example, the following program fragment

COMMIT
EITHER x > 6; y := x
ORELSE y := 6
END;
y < 10;
END
y < 8;

fails if the value of x is 9: When the control leaves the
COMMIT statement the value of y is 9 and the choice
point created by the OR statement is erased. Therefore,
backtracking to the second branch does not takes place
once the test y < 8fails. On the other hand, if the value
of x is 11, the whole computation succeeds with value
6 for y: The test y < 10 (i.e. the one inside COMMIT)
fails, and the second choice is performed.

We now show an example of the use of the COMMIT

statement by presenting a naive solution to a classical
problem.

Problem 6 Check whether a propositional formula is
satisfiable.

We implement an enumeration procedure that uses
the OR statement to assign values to an array of proposi-
tional letters. We assume to have a representation of the
formula, by means of the type Formula, and a function
SatisfyFormulathat checks if a given interpretation is
a model of the formula. Then the following program
fragment succeeds (and certifies an interpretation as a
model) if and only if the formula is satisfiable.

VAR a: ARRAY [1..N] OF BOOLEAN;

f: Formula;
COMMIT
FOR i := 1 TO ¥ DO
EITHER a[i] := TRUE
ORELSE a[i] := FALSE
END
END;
SatisfyFormula(a,f)
END

The COMMIT statement prevents the program from
looking for a different model in case a later failure occurs
(we want to check the satisfiability of the formula, and
not to generate all its models upon backtracking).

4.2 FORALL Statement

Suppose now that we want to compute not just one
model, but all the models of a propositional formula.
In this case we need to explore the whole search space,
and not only the part of it up to the first successful
node.

In order to deal with situations of this kind, we in-
troduce a new statement, called FORALL, that allows for
exploring all the choices of a given sequence of state-
ments. More specifically, we use the following syntax:

FORALL <statement-sequence>
D0 <statement-sequence>
END

The statement FORALL S DO T END is processed in
the following way: S and T are executed in sequence,
thereafter, if there is a choice point left within S, control
returns to the successive branch of the choice (as if a
failure were encountered). This process continues as
long as there are still choice points in S. Thereafter, the
computation succeeds, even if S fails (i.e. S succeeds 0
times), and no choice points are created.

Consequently, FORALL COMMIT S END DO T END is
not equivalent to S; T as the latter statement fails if
S does.

Statements within S are undone upon backtracking,
whereas those in T are not, i.e. they have a permanent
effect within the execution of the FORALL statement.
The choice points created during each execution of T
are removed as soon as the control returns to the suc-
cessive choice point left within S. So, in effect, there is
an implicit COMMIT statement surrounding T. If at cer-
tain stage the execution of T fails, then the execution
of the whole statement FORALL S DO T END fails. For
example, the program fragment

y = 0;

FORALL
EITHER x :
ORELSE x :
ORELSE x :
END

DO
write(x);
y =y +x

END;

non
N o

[}
~

prints the values 5, 2, and 7, and assigns the value 14
to y. The computation succeeds and leaves no choice
points after its execution.

73

Note that the effect of T is permanent only within
the execution of the FORALL statement, whereas it will
be undone if it is included in another nondeterministic
statement. For example, if a FORALL statement is inside
a branch of an OR statement, the state of the variables
before entering a new branch is restored, thus removing
the effects of the DO part of the FORALL statement.

Although we do not impose any syntactic constraint
on the form of the FORALL statement, its correct use
imposes some common-sense limitations. Namely, no
variable can be modified both in the body of the FORALL
part and in the body of the DO part. In fact, these parts
serve different purposes. In particular, the assignments
in the FORALL part are meant to be non-permanent,
so they can be undone, while the ones in the DO part
are meant to be permanent, so they should not be un-
done. This limitation resembles the already discussed
common-sense restriction concerning the FOR and SOME
statements that the loop control variable should not be
modified within the loop body.

Problem 7 Compute all models of a propositional for-
mula and return them in a list.

The following program fragment does the job:

VAR a: ARRAY [1..N] OF BOOLEAN;
f: Formula;
m: List0OfModels;

m := EmptylList;
FORALL
FOR i := 1 TO N DO
EITHER a[i] := TRUE
ORELSE a[i] := FALSE
END
END;
SatisfyFormula(a,f);
DO
m := insert(a,m);
END

It is worth noting that the statement FORALL S DO
T END is not equivalent to

EITHER S; T; FALSE
ORELSE TRUE
END

that mimics the so-called failure-driven loop, a stan-
dard technique in logic programming (see e.g. Sterling
& Shapiro (1986)) used to deal with this kind of situa-
tions. The difference stems from the fact that in FORALL
S DO T END the T statement is not undone upon back-
tracking. This allows us to include in T all the perma-
nent operations that need to be completed after each
solution. Such operations always exist (otherwise ev-
erything that was computed would be lost) and in logic
programming they are generally implemented by means
of input/output operations or assert and retract.

Problem 8 Knapsack. Given the real-valued objects
ai,-..,an (volumes), bi,...,b, (values), and c (capac-
ity), find the binary-valued objects zi,...,Zn (s0lu-
tions) such that 31 | b;z; is maximized subject to the
constraint Y i aiz; < c.

We present here a solution that encodes a depth first
branch and bound algorithm. That is, the solution is
constructed step by step by determining at each step i
whether z; is assigned to 1 or 0. Each partial solution is
discarded if either (i) it violates the capacity constraint
or (1) it can’t be completed to a solution better than
the current best one.

The branch and bound algorithm is implemented by
means of a FORALL statement over a FOR cycle with an
OR statement inside.

Calling volume the total volume of the objects for
which we have set z; to 1, condition (i) can be tested
by checking if volume in the given partial solution is
smaller or equal than the capacity. Calling waste the
total value of the objects for which we have set z; to
0, condition (2¢) can be tested by checking if thewaste
in the given partial solution is larger than the waste in
the current (complete) best solution. Therefore, the use
of tests allows us to enforce conditions () and (42) in a
very simple way by means of the statements volume <=
capacity and waste < TotalValue - CurrentBest.

TYPE RealVector = ARRAY [1..N] of REAL;
BinaryVector = ARRAY [1..N] of [0..1];

PROCEDURE knapsack (Volume,Value: RealVector;
capacity: REAL; VAR Solution: BinaryVector);
VAR CurrentBest, TotalValue, volume, waste: REAL;
BEGIN

CurrentBest := 0;
TotalValue := 0;
FOR i :=1 TO N DO
TotalValue := TotalValue + Value[i]
END;
volume := 0;
waste := 0;
FORALL
FOR i := 1 TO N DO
EITHER
Solution[i]l := 1;
volume := volume + Volumel[i];
volume <= capacity
ORELSE
Solution[i] := 0;
waste := waste + Value[i];

wvaste < TotalValue -~ CurrentBest
END
END
DO CurrentBest
END
END knapsack

:= TotalValue - waste

74

The assignment to the variable CurrentBest is within
the DO part of the FORALL statement, and therefore it
is not undone upon backtracking. This is crucial for
maintaining the current best solution while exploring
different branches.

5 Multiple Uses of a Program

In logic programming it is sometimes possible to use the
same procedure for a number of different purposes. For
example, the same program can be used both for testing
a solution and for computing one. This multiple use of a
single program is absent in the imperative programming
paradigm. In this section we explain how this facility
can be realized within our framework.

5.1 Generalization of Equality

By way of example reconsider Problem 4. Suppose that
we would like now to find an array of 27 elements that
is a remarkable sequence. To obtain a single solution to
both problems we proceed in two steps. As a first step
we generalize the use of equality.

In imperative programming languages a variable upon
its declaration is usually either initialized to a default
value or to some “garbage” value — an arbitrary value
that happens to be present in the storage area allocated
to the variable.

For our purposes it is important to be more precise.
In what follows, we assume that a variable upon its dec-
laration is uninitialized and remains so until a value of
an expression is assigned to it. If this expression uses an
uninitialized variable or this value lies outside the do-
main of the variable, then we postulate that a run-time
error arises. Otherwise, from that moment on the vari-
able is initialized. So in our approach an uninitialized
variable has no value associated with it. This viewpoint
is usually not adopted in imperative programming lan-
guages.

Further, we stipulate that if all the variables in an ex-
pression are initialized, then the expression has a known
value and otherwise it has an unknown value.

Now we introduce the following crucial definition.

Definition 4 Consider a test s = t.

o Suppose both sides are expressions with known
values. Then we treat it as in Definition 1.

e Suppose that

— one side, say s, is an uninitialized variable,

— the other side, t, is an expression with known
value,

— their types are compatible.

Then we treat it as an assignment, which means
that the value of t is assigned to s.

e The remaining cases yield a run-time error. o

In particular, if both sides are expressions with un-
known values, a run-time error arises. Note that —
conforming to the logical interpretation — we treat here
both sides of equality in a symmetric way.

We can now return to the issue raised at the begin-
ning of this subsection. Thanks to the generalized use
of equality the original program is now a solution to
both problems!

From the computational point of view the equalities
in the question procedure serve now both to assign a
value to an (uninitialized) subscripted variable and to
test a value of an (initialized) subscripted variable. So
if the actual array parameter is completely uninitial-
ized, the equalities are used as assignments, and if the
actual array parameter is completely initialized, these
equalities are used as tests.

5.2 New Parameter Mechanism

In this subsection we take a closer look at the inter-
play between the generalized use of equality and the
parameter-passing mechanisms. We just noticed that
the procedure question could be used either for test-
ing or for computing. To this end it was crucial that its
parameter was declared as a call by reference parame-
ter.

In general, this double use of a single procedure is
not possible. For example, in the case of simple types
(say INTEGER) also non-variable expressions (like 7) can
be passed as actuals. In this case only call by value is
legal.

We now introduce a parameter-passing mechanism
that permits such a double use of procedures — for
testing and for computing — for a larger class of pro-
grams. We call this parameter mechanism call by mized
form and denote its use by the keyword MIX. First, we
introduce it for parameters of a simple type.

Definition 5 Suppose that the formal MIX parameter
is a variable of simple type.

o If the actual parameter is an uninitialized variable,
then MIX becomes call by reference.

e If the actual parameter is an ezpression with known
value, then MIX becomes call by value.

e The remaining cases yield a run-time error.]

So the call by mixed form is in effect a “late binding”
parameter mechanism — the decision whether a specific

75

parameter is to be called by reference or by value is
delayed to the run-time.

To see the advantages of the call by mixed form con-
sider the following problem.

Problem 9 Check if an integer e is present in an array
a: ARRAY[0..N] OF INTEGER.

We write the solution as a procedure.

PROCEDURE find(MIX e: INTEGER; a: ARRAY OF INTEGER);
VAR i: CARDINAL;

BEGIN
SOME i
END

END find

:= 0 TO HIGH(a) DO e = ali]

To allow the use of this procedure for arrays of different
sizes, we declared here the array parameter as an open
array parameter (see Wirth (1985, page 53)). Recall,
that if the actual parameter b, declared as

b: ARRAY[m..n] of INTEGER

isused, then a[i] denotes b[m+i] for i € [0..HIGH(a)],
where HIGH(a) = n-m.

Suppose now that x is an uninitialized integer vari-
able and a and b are arrays of integers. Then

e the call £ind(7,a) tests if 7 appears in a;

o the call £ind(x,a) assigns upon backtracking suc-
cessively all elements of a to x;

e the program fragment

find(x,a);
find(x,b)

tests if the arrays of integers a and b have an el-
ement in common; if so it computes such an ele-
ment, and otherwise it fails;

e the program fragment

FORALL find(x,a)
DO find(x,b)
END

tests if all elements of a are also elements of b; if
so then it suceeds and otherwise it fails;

e the program fragment

FORALL
find(x,a);
find(x,b)

DO
write(x)

END

prints all elements that a and b have in common.

In the last three cases, the first occurrence of x is
called by reference and the second by value.

So, thanks to the fact that we declared the first pa-
rameter as a MIX parameter, we can use the procedure
find both to check whether an element is present in a
given array and to generate all the elements of an ar-
ray. Combining both types of calls we can build implicit
loops.

The above instances of behaviour of the find pro-
cedure cannot be reproduced using the customary pa-
rameter mechanisms of Modula-2. Indeed, suppose that
instead of the call by mixed form we would use call by
value. Then if x were uninitialized, the call find(x,a)
would result in a run-time error and if x were initialized,
the program fragment find(x,a); find(x,b) would
rather check if x occurs both in a and in b. Finally, if we
used call by reference, the program fragment find (x,a) ;
find(x,b) would exhibit the same behaviour as for call
by mixed form, but the call £ind(7,a) would yield a
compile time error.

To complete the presentation, the call by mixed form
is extended to parameters of compound types: it is de-
termined per position whether it is to be called by value
or by reference.

As an example consider the following simple solution
to the eight queens problem.

Problem 10 The Eight Queens Problem. Place 8 queens
on the chess board so that they do not attack each other.

The solution given below simply states that each
queen should be placed in a legal field that does not
come under attack by the already placed queens. The
program is purely declarative in the sense that it can
be dually read as a logic formula.

CONST N = 8;
TYPE board = ARRAY[1..N] OF [1..N];
PROCEDURE queens(MIX x: board);
VAR i,column,row: [1..N];
BEGIN
FOR column := 1 T3 N DO
SOME row := 1 TO N DO
FOR i := 1 TO column-1 DO
x[i] <> row;
x[1] <> row+column-i;
x[i] <> row+i-column
END;
x[column] = row
END
END
END queens

In this solution the array x is declared as a MIX pa-
rameter and the assignments to its elements take place
by means of equalities. As a result this procedure can

76

be used in a number of different ways, other than just
finding a solution.

First, it can also be used to test whether an array
a is a solution. Indeed, if the actual array a is initial-
ized before the call queens(a), then all the equalities
become interpreted as tests.

Second, this procedure can also be used to look for a
specific solution. For example, to find a solution a to the
eight queens problem such that a[1] = 4 it suffices to
write

a1l = 4;
queens(a)

and to find a solution a such that a[1] > 4 it suffices
to write

queens(a) ;
al1] > 4

etc. Finally, to count the number of solutions such that
al1] > 4 we can write

i = 0;
FORALL
queens(a);
a1l > 4
DO i := i+l
END

So the procedure queens can be used to compute, to
test and to search for a specific solution, and to count
the number of all solutions (that satisfy some property).
In all these cases the text of the original procedure does
not need to be changed. This is in contrast to the cus-
tomary solution (see e.g. Wirth (1986, pages 153-157))
which in each case has to be modified.

5.3 Testing the Status of an Expression

The additions discussed in the preceding two subsec-
tions relied in a crucial way on the distinction between
initialized and uninitialized variables, and more gener-
ally between expressions with known and with unknown
value. In this subsection we go one step further and add
to the language a relation that allows us to perform an
explicit test whether an expression has a known value.

More specifically, we introduce a unary relation KNOWN
such that for an expression s the test KNOWN (s) succeeds
if and only if s is an expression with a known value. In
particular, for a variable x the test KNOWN (x) succeeds
if x is initialized and fails if x is uninitialized.

To illustrate a natural use of the KNOWN relation con-

sider the following variant of a problem from Colmer-
auer (1990).

Problem 11 Squares in the rectangle. Cover an inte-
ger sized nz x ny rectangle with squares S, ..., Sm of
Integer sizes si,...,8m,. “Covering” means that no two

squares overlap and the rectangle is completely filled in.

To solve this problem we use a backtracking algo-
rithm that fills in all the cells of the rectangle one by
one. For each cell, it checks if it is already covered
by some square placed to cover a previous cell; if it is
not covered, it looks for a square not already placed
to be located with the top-left corner in the given cell.
The algorithm backtracks when none of the available
squares can cover the given cell without sticking out of
the rectangle.

Backtracking is implemented by a SOME statement
that checks for each square whether it can be put to
cover a given cell. The solution is returned via two
arrays PosX and PosY such that for square k (of size
Sizes[k]) PosX[k], PosY[k] are the coordinates of its
top-left corner.

The two equalities PosX[k] = i and PosY[k] = j
are used both to construct the solution and to prevent
a placed square to be used again in a different place.

We use the AlreadyCovered procedure to deal with
cells that are covered by squares already used to fill
other cells. For checking that a cell is already covered
we look —by means of the KNOWN relation — for an
“already placed” square that covers the cell. The call
of AlreadyCovered is used as a test.

Passing PosX and PosY as MIX parameters (instead
of VAR) allows us also to use the program to check a
given solution or to complete a partial solution.

CONST NX = 32; NY = 33; (* size of the rectangle *)
M=9; (* number of small squares *)
TYPE SquaresVector = ARRAY [1..M] of INTEGER;

PROCEDURE Squares(Sizes: SquaresVector,
MIX PosX, PosY: SquaresVector);
VAR i,j,k: INTEGER;
BEGIN
COMMIT
FOR i := 1 TO NX DO
FOR j := 1 TO NY DO
IF NOT AlreadyCovered(i,j,Sizes,PosX,PosY)
THEN
SOME k := 1 TO M DO
Sizes[k] + i <= NX + 1;
Sizes[k] + j <= NY + 1;

PosX[k] = i;
PosY[k] = j
END
END
END
END
END
END Squares;

PROCEDURE AlreadyCovered(i,j: INTEGER;

77

Sizes: SquaresVector;
MIX PosX, PosY: SquaresVector);
VAR h: INTEGER;
BEGIN
SOME h := 1 TO M DO
KNOWN (PosX[h]);
KNOWN (PosY[h]);
PosX[h] <= i;
PosX[h] + Sizes[h] > i;
PosY[h] <= j;
PosY[h] + Sizes[h] > j
END
END AlreadyCovered;

Note that this program does not use any assignment.

6 Conclusions and Future Work

In this paper we extended the imperative programming
paradigm to deal in a more natural way with the algo-
rithmic problems involving search. The realized exten-
sion was not a goal in itself but rather an intermediate
stage on the road towards a realization of a strongly
typed constraint programming language that combines
logic and imperative programming.

In our approach primitive constraints are simply pri-
mary boolean expressions. Depending on the type and
syntax of their operands we have boolean constraints,
linear integer constraints, linear real constraints, etc.
The use of types should allow us to extend the advan-
tages of strong typing to constraint programming: their
use should lead to a simple “compartmentalization” of
the constraint store and should allow us to catch simple
errors at compile time and report other obvious errors
at run-time. These benefits are difficult to realize within
the logic programming framework.

In such a constraint programming language some
problems can be solved by a program that consists of
two parts: the generation of the relevant constraints and
the constraint solving part. For instance, in the case of
the 8 queens problem the generation part literally coin-
cides with the problem description in the Modula-2 syn-
tax. The constraint solving part depends on the syntax
and the type of the constraints. The presence of types
ensures security and the correct usage of constraints,
while the MIX parameter passing mechanism provides a
flexible use of the procedures. In the case of programs
involving chronological backtracking, like the solutions
to the last two problems, the use of constraints should
lead to more efficient solutions due to the constraint
propagation.

This view of constraint programming is related to
though conceptually different from Puget (1994) in which
constraint programming (on finite domains) is realized
in the form of a C++ class. It is much closer related

to 2LP of McAloon & Tretkoff (1995). In 2LP there
are two types of variables: the “customary”, program-
ming, variables and the continuous variables (the name
derives from their use in mathematics). The continuous
variables vary over the real interval [0, +00) and can be
either simple ones or arrays. The only way these vari-
ables can be modified is by imposing linear constraints
on them. In the most extreme case these variables can
be assigned a specific value by means of an equality
constraint. Whenever a constraint is added, its feasibil-
ity w.r.t. the old constraints is tested by means of an
internal simplex-based algorithm.

The language supports the extensions discussed in
Sections 2 and 3. Moreover, the FORALL statement is
available in a limited way by means of the find_all
construct that corresponds to FORALL S DO skip END.

Even though at first sight the programming exam-
ples here discussed have nothing to do with constraints,
it turns out that most of the presented programs can
be directly executed by the 2LP system (after appro-
priate syntactic modifications that have to do with the
C-based syntax of 2LP). In particular, in absence of
assignment, the MIX parameter mechanism models ez-
actly the computational behaviour of continuous vari-
ables passed as actual parameters. As a result, our so-
lutions to Problems 4 and 10 and most of the multiple
uses of them discussed in Section 5 can be reproduced
in 2LP once the relevant arrays are declared as continu-
ous. This seems to support our view that call by mixed
form is a natural parameter mechanism.

In 2LP the assignments are not “undone” upon back-
tracking, in contrast to the constraints imposed on con-
tinuous variables. Consequently, our solution to Prob-
lem 8 (the knapsack problem) cannot be reproduced
within 2LP because it relies upon backtracking over as-
signment.

The above analysis shows that 2LP supports an al-
ternative style to programming for problems involving
search and that our language proposal realizes some
simple uses of constraints without introducing them ex-
plicitly. In our future work we plan to focus on the use of
constraint propagation in presence of the features here
introduced, and on the use of constraints as program
output, mechanisms that are absent in 2LP.

We think that the intermediate language proposal
here discussed is of interest in its own right. First, it
makes clear that many useful aspects of the logic pro-
gramming paradigm can be realized within the imper-
ative programming paradigm. Second, it shows that
some algorithmic problems can be solved in a more nat-

ural way when drawing on both programming paradigms.

We are enhanced in this view by the fact that we have
written several other classical programs involving search
in this language, like the -8 pruning. They will be ap-

78

pear in the long version of this paper.

So far we left out of consideration three important
topics regarding this language proposal: semantics, pro-
gram verification and implementation.

First, it is worthwhile to mention that most of the
constructs of our language admit a declarative interpre-
tation. So ”;” corresponds to the conjunction, the OR
statement to the disjunction, the FOR statement to the
bounded universal quantification and the SOME state-
ment to the bounded existential quantification (though
the scope of both bounded quantifiers extends to the
end of a conjunction). Finally, FORALL S DO T corre-
sponds to the restricted quantification: Vx(¢s — ¢1),
where x is the list of all variables of S and ¢y is the
declarative interpretation of the statement U.

Because of the presence of assignment not all pro-
grams admit a declarative interpretation. Therefore
we are working now on an operation semantics of the
proposed language in the style of Hennessy & Plotkin
(1979).

Program verification calls for proof rules in the style
of Hoare or for the weakest precondition semantics in
the style of Dijkstra. In our case we plan to extend the
weakest precondition semantics provided by Bonsangue
& Kok (1994) for a simple language involving both don’t
know and don’t care nondeterminism in the form of
guarded commands and backtracking, to the primitives
of our language.

As to the implementation, which is still in a pre-
liminary phase, there are essentially two options: ei-
ther to translate the programs into deterministic pro-
grams (here Modula-2 programs) — an approach al-
ready discussed in Cohen (1979), or to compile them
into a WAM like abstract machine — an approach fol-
lowed by McAloon & Tretkoff (1995).

The features defined in Section 5 (e.g. generalized
equality) require some special machinery. In particular,
to account for the notion of known value it is necessary
for each type to put aside a specific bit pattern, which is
assigned to all uninitialized variable (resembling the nil
value for pointers). Alternatively, we might associate
with each variable (or variable field) a single bit which
tells whether the variable is initialized (has a known
value) or not (its value is unknown).

The MIX parameter passing mechanism could be dealt
with by always storing the address of the actual MIX pa-
rameter as in call by reference, even though it could be
also passed by value. This way we reserve space for
values of expressions that are MIX parameters in the
stack frame of the caller rather than in the stack frame
of the callee. The parameter would have then to be
accessed indirectly even when it is, effectively, a param-
eter passed by value.

Acknowledgements

We would like to thank Feliks KluZniak for detailed
comments on a preliminary version of the paper and
Ken McAloon and Carol Tretkoff for useful discussions
concerning 2LP. All five referees provided us with useful
suggestions.

This work has been partly carried out while the sec-
ond author was visiting CWI in Amsterdam. It is part
of the ERCIM fellowship Programme and financed by
the Commission of the European Communities.

References

Apt, K. (1996), ‘Arrays, bounded quantification and it-
eration in logic and constraint logic programming’,
Science of Computer Programming 26(1-3), 133~
148.

Barklund, J. & Bevemyr, J. (1993), Prolog with arrays
and bounded quantifications, in A. Voronkov, ed.,
‘Logic Programming and Automated Reasoning—
Proc. 4th Intl. Conf.’, LNCS 698, Springer-Verlag,
Berlin, pp. 28-39.

Bonsangue, M. M. & Kok, J. (1994), ‘The weakest pre-
condition calculus: recursion and duality’, Formal
Aspects of Computing 6(6A), 788-800.

Bylander, T. (1991), Complexity results for planning,
in ‘Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence (IJCAI-91),
pp- 274-279.

Coelho, H. & Cotta, J. C. (1988), Prolog by Example,
Springer-Verlag, Berlin.

Cohen, J. (1979), ‘Non-Deterministic algorithms’, ACM
Computing Surveys 11(2), 79-94.

Colmerauer, A. (1990), ‘An introduction to Prolog III’,
Communications of ACM 33(7), 69-90.

Eriksson, L.-H. & Rayner, M. (1984), Incorporating mu-
table arrays into logic programming, in S. A. Tarn-
lund, ed., ‘Proc. Second Int’l Conf. on Logic Pro-
gramming’, Uppsala University, pp. 101-114.

Fikes, R. E. & Nilsson, N. J. (1971), ‘STRIPS: A new
approach to the application of theorem proving
to problem solving’, Artificial Intelligence Journal
2, 189-208.

Griswold, R. E. & Griswold, M. T. (1983), The Icon
Programming Language, Prentice-Hall, Englewood
Cliffs, New Jersey, USA.

79

Hennessy, M. & Plotkin, G. (1979), Full abstraction for
a simple programming language, in ‘Proceedings of
Mathematical Foundations of Computer Science’,
Lecture Notes in Computer Science 74, Springer-
Verlag, New York, pp. 108-120.

Kluzniak, F. (1993), SPILL-2: the language, Technical
report ZMI Reports No 93-03, Institute of Infor-
matics, Warsaw University. A deliverable for year
1 of the BRA Esprit Project Compulog 2.

McAloon, K. & Tretkoff, C. (1995), 2LP: Linear pro-
gramming and logic programming, in P. V. Henten-
ryck & V. Saraswat, eds, ‘Principles and Practice
of Constraint Programming’, MIT Press, pp. 101-
116.

Puget, J.-F. (1994), A C++ implementation of CLP, in
‘Proceedings of the Second Singapore International
Conference on Intelligent Systems’, Singapore.

Schwartz, J. T., Dewar, R. B. K., Dubinsky, E. &
Schonberg, E. (1986), Programming with Sets —
An Introduction to SETL, Springer-Verlag, New
York.

Shoham, Y. (1994), Artificial Intelligence Techniques in
Prolog, Morgan Kaufmann.

Sterling, L. & Shapiro, E. (1986), The Art of Prolog,
MIT Press.

Voronkov, A. (1992), Logic programming with bounded
quantifiers, in A. Voronkov, ed., ‘Logic Program-
ming and Automated Reasoning—Proc. 2nd Rus-
sian Conference on Logic Programming’, LNCS
592, Springer-Verlag, Berlin, pp. 486-514.

Wirth, N. (1985), Programming in Modula-2, third, cor-
rected edn, Springer-Verlag, New York.

Wirth, N. (1986), Algorithms and Data Structures,
Prentice-Hall, Englewood Cliffs, New Jersey, USA.

